Gevrey Well-Posedness of the Hyperbolic Prandtl Equations
نویسندگان
چکیده
منابع مشابه
Well-posedness for Non-isotropic Degenerate Parabolic-hyperbolic Equations
We develop a well-posedness theory for solutions in L to the Cauchy problem of general degenerate parabolic-hyperbolic equations with non-isotropic nonlinearity. A new notion of entropy and kinetic solutions and a corresponding kinetic formulation are developed which extends the hyperbolic case. The notion of kinetic solutions applies to more general situations than that of entropy solutions; a...
متن کاملOn the Local Well-posedness of the Prandtl and Hydrostatic Euler Equations with Multiple Monotonicity Regions
We find a new class of data for which the Prandtl boundary layer equations and the hydrostatic Euler equations are locally in time well-posed. In the case of the Prandtl equations, we assume that the initial datum u0 is monotone on a number of intervals (on some strictly increasing on some strictly decreasing) and analytic on the complement and show that the local existence and uniqueness hold....
متن کاملAlmost global well-posedness of Kirchhoff equation with Gevrey data
Article history: Received 26 November 2016 Accepted after revision 3 April 2017 Available online 18 April 2017 Presented by the Editorial Board The aim of this note is to present the almost global well-posedness result for the Cauchy problem for the Kirchhoff equation with large data in Gevrey spaces. We also briefly discuss the corresponding results in bounded and in exterior domains. © 2017 A...
متن کاملWell{posedness of Stiff Hyperbolic Systems
The theory of stii well{posedness of initial value problems for hyperbolic systems with large relaxation terms is reviewed. Furthermore, an asymptotic expansion of solutions with respect to the relaxation parameter is presented. Finally, the theory is illustrated with an example and an outlook concerning boundary value problems is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Research
سال: 2022
ISSN: ['1674-5647', '2707-8523']
DOI: https://doi.org/10.4208/cmr.2021-0104